Showing posts with label Flow. Show all posts
Showing posts with label Flow. Show all posts

Thursday, October 28, 2021

Pengecekan Transmitter yang Rusak | INSTRUMENT PART 17

Pada bagian ini, saya ingin sharing pengalaman saya yang tidak seberapa ini. Tujuan saya murni hanya untuk sharing dan diskusi, karena saya pun sampai sekarang masih belajar dan belajar. Oke langsung saja ke topiknya....

Sebenarnya transmitter yang rusak itu apa sih? Menurut saya makna "rusak" itu bisa diindikasikan dengan sinyal transmitter yang tidak terbaca oleh kontroller / PLC. Ini beda kasusnya dengan "transmitter error". Transmitter error menurut saya ketika ada salah satu fungsi/fitur transmitter yang tidak berjalan dengan semestinya.

Contoh transmitter eror dan penyebabnya :

1. Nilai pembacaan flowmeter yang fluktuatif dan hunting, disebabkan oleh pipa media non metal, sehingga titik referensi bias.

2. Nilai pembacaan ultrasonic level sensor fluktuatif dan hunting, disebabkan oleh koneksi ground sensor ke transmitter tidak terhubung.

Ultrasonic noise source


3. Power pada flowmeter terbaca tidak memenuhi (error), karena kabel sensor yang digunakan bukan merupakan standar factory.

4. Sensorprom pada flowmeter tidak terinstal, sehingga data kalibrasi factory tidak terinput ke transmitter. Membuat transmitter tidak bisa menampilkan hasil pengukuran.

Error on magnetic flowmeter


Dan banyak lagi peristiwa erornya transmitter. Sebenarnya solusi untuk semua device instrumen selalu sama : BACA MANUAL INSTRUMEN TERSEBUT dan CARI TAHU INDIKASI ERRORNYA KARENA APA.

Untuk mencari tahu indikasi dan penyebab eror sebenarnya gampang-gampang susah. 

1. Apakah display instrumen menampilkan suatu lambang terntentu / keterangan eror.

error sign on display

 

2. Cek semua koneksi kabel apakah sudah terhubung secara baik atau belum.

dont forget to wire shield/ground cable to terminal

Kalau misalnya 2 cara di atas belum bisa, kita harus menggunakan try and error diagnose lah wkwk. Kalau yang ini sih udah dalam ranah pengalaman, tidak bisa secara teoritis wkwk.

Okei back to the topic. Untuk transmitter yang rusak, sebenarnya saya punya 1 jurus jitu untuk mengetahuinya. 

Looping Transmitter dengan Menggunakan Remote Display.

Seperti yang kita ketahui, wiring pada transmitter ada beberapa jenis. 

1. Looping 2 wire : merupakan wiring yang paling umum digunakan pada transmitter. 2 wire disini menjelaskan bahwa dalam dalam 1 kabel, berfungsi sebagai daya sekaligus output.

2 wire looping diagram

2. Looping 4 wire : Biasanya 2 kabel digunakan sebagai power, dan 2 kabel lagi digunakan sebagai output.

4 wire transmitter

Langkah Looping Transmitter yang rusak :

1. Cabut kabel transmitter yang berasal dari PLC.

2. Koneksikan transmitter ke RD 300 Siemens.

RD 300 looping to transmitter


3. Pada menu RD 300, lakukan scaling :

lower scale    :     4 mA   -->    4

upper scale    :    20mA   -->    20   

Scaling di atas dilakukan dengan tujuan untuk mengetahui arus looping yang mengalir pada transmitter. Ada 2 kondisi yang dapat kita gunakan sebagai dasar bahwa transmitter rusak. Arus yang terbaca adalah sebesar < 4mA ATAU >20mA. Intinya out of range dari current operation yang seharusnya lah.

Terkait dengan fenomena current yang out of range ini, sebenarnya saya sedikit bingung terkait penjelasannya.

Untuk transmitter yang nilai looping currentnya < 4 mA, saya tidak begitu paham penyebab dan diagnosa kerusakannya. Untuk transmitter yang nilai looping currentnya > 20 mA, bahkan dalam satu kasus mendekati infinite (999.9 mA).

Di bawah ini adalah transmitter rusak yang pernah saya tes :

1. Pressure Transmitter P320

below normal current looping

Dapat dilihat bahwa transmitter mati total. Kemudian wiring dari PLC dilepaskan dari transmitter. Transmitter di looping dengan RD 300 Siemens yang sudah kita scaling. Kemudian RD 300 kita powered on, dan dapat dilihat hasilnya. Transmitter tetap mati, dan arus loopingnya 3,39 mA. Ini jelas out of range dari batas bawah arus looping. Kemudian Siemens Indonesia memutuskan berdasarkan hasil diagnosa bahwa kerusakan ada pada display. Setelah display baru datang dari factory dan dicoba ke transmitter rusak, transmitter tetap tidak menyala. Kemungkingan kerusakannya ada pada mainboard elektriknya. Untuk penyebabnya saya belum tahu pasti, tapi some of possibility akan coba saya tuliskan di bawah.

2. Level Transmitter Probe LU

high humidity on transmitter's terminal. This caused by wrong installation

infinite current looping. Display keep flashing

Saat melihat setup instalasi, saya sudah menduga bahwa transmitter yang satu ini rusak karena kemasukan air. Okeii saya coba cek dulu kondisinya. Seperti biasa setelah transmitter dilepaskan dari kabel plc, maka kita looping dengan RD 300. Transmitter yang tadinya mati, tiba-tiba menyala. Namun kondisi menyala bukan berarti bahwa transmitter baik-baik saja. Tiba-tiba layar menampilkan simbol aneh yang tidak dapat mengerti. Hanya menampilkan seven segment yang tidak jelas bentuknya. Oiya semua display transmitter pasti menampilan seven segment. Yang paling bikin saya kaget adalah, pada RD300 ditampilkan angka 999,9 mA. Yang mana artinya bahwa looping current tersebut jauh melebihi 20 mA. Disini saya begitu kaget karena selama saya melakukan pengujian looping current dengan RD300, maksimal yang selalu saya dapat adalah arus sebesar 20 mA. Flashing pada display RD300 semakin membuat saya curiga, bahwa transmitter ini sudah dalam kondisi rusak. Dan setelah saya cek pada manual RD300, ternyata memang benar :

error on datasheet

RD300 memang didesain untuk looping 4-20 mA. Jadi ketika suatu arus looping ada diluar batas tersebut, maka device ini akan menampilkan angka secara flashing. Ini sudah jelas saya pikir berada pada kondisi infinite current. Sesuai persamaan hukum listrik, arus akan mendekati tak terhingga ketika resistansi ~ 0 ohm. Yang membuat resistansi ~0 tentunya adalah peristiwa short circuit, dimana potensial positif langsung berhubungan dengan potensial negatif tanpa melewati hambatan (board transmitter).


Kesimpulan

Sebenarnya untuk pengecekan apakah sebuah transmitter sudah rusak atau belum ada banyak caranya. Yang paling umum digunakan adalah menggunakan HART Communicator. Karena fitur pada HART Communicator ini sangat banyak (tidak hanya mengecek looping current), tapi juga bisa mengecek dan mengimput rentang kerja transmitter.

Saya sudah menanyakan masalah ini dibeberapa forum khusus automation and instrument, dan orang yang expert di bidang instrumen mengatakan bahwa produsen tidak tertarik untuk memproduksi part instrument. Artinya ketika alat instrumen kita rusak (selama ini bukan karena human error), pilihannya hanya ada 2 : claim warranty selama masih ada masa garansinya, atau beli yang baru. Hal ini juga yang menurut saya menjadi alasan kenapa diagnosa penyebab kerusakan instrumen tidak secara detail diteliti. Misalnya TV kita mati dan kita panggil teknisi. Pasti teknisi tersebut menyarankan kita membeli komponen A, B, C. Instrumen tidak seperti itu, terkadang masalahnya sulit dideteksi.

Terkait penyebabnya, dibawah saya akan berikan penjelasan dari orang yang expert :

link : Siemens Forum 

There are general service conditions that cause failures, like:

- heat kills electronic components and seals.  Over heating any electronic device shortens its life considerably.
- over pressuring pressure components either kills the sensor or distorts so badly that the readings are meaningless.
- water or liquid intrusion into electronic compartments causes damage
- near lightning strikes damage electronics
- excessive common mode voltage can burn out electronics
- corrosion causes electrical connection problems which causes faults.
- Applying 24Vdc across the input resistor of 4-20mA input channel will burn out the little 1/8W resistor (when someone puts a jumper across the (+) and (-) terminals of a powered, 2 wire transmitter)
- dirt and grit in the flow stream of a turbine meter
- customers will connect 120Vac across the terminals 24Vdc device and burn it up.

Sebenarnya kerusakan transmitter lebih banyak disebabkan human error ketimbang defect from factory. Jadi sebaiknya pahami spesifikasi trasnmitter, pahami prosedur dan instalasi terlebih dahulu, dan jangan lupa baca manual alatnya sebelum dioperasikan. 

Tengkyuuuuu...

Monday, August 16, 2021

Open Channel Flowmeter dan Level menggunakan Pressure | INSTRUMENT PART 15

TIADA AKAR ROTANPUN JADI

Mungkin ini merupakan sifat alami manusia yang hadir dari hasil kekreativitasan manusia wkwk. Manusia selalu berpikir memanfaatkan alat/barang di sekitarnya untuk menggantikan fungsi alat/barang yang tidak dia punya, namun sedang dibutuhkan.




Mungkin fenomena substitusi barang seperti gambar diatas bagi kita tidak masalah dan tidak menimbulkan kerugian yang berarti. Lantas bagaimana jika dibawa ke industrial case?
Nah didunia sensor juga banyak terjadi fenomena seperti ini. Biasanya fungsi substitusi itu mencul karena adanya hubungan kedua fenomena variabel itu berdasarkan hukum fisika atau hanya sebatas korelasi linearitas (kesebandingan). Di bagian ini saya akan menjelaskan fenomena "tiada rotan akarpun jadi" versi sensor.

1. Open Channel Flowmeter
Saya baru memahami kasus ini ketika ada customer yang meminta flowmeter untuk saluran terbuka. Bagi kalian yang belum tahu apa itu open channel flowmeter, kalian bisa lihat melalui link di bawah :
Untuk sensornya menggunakan ultrasonic continuous level sensor dan LUT400 transmitter.

design of open channel cannal

Prinsip Kerja : Kita input data-data kanal kita ke transmitter. Nah transmitter nantinya akan mengkonversi ketinggian ke laju aliran. Ini menggunakan prinsip linearitas. Misalnya ketika tinggi air pada h reference (0%) = 5 m3/jam dan saat tinggi air maksimum =  10 m3/jam. Maka saat tinggi air 50% dari h maks, maka itu setara laju aliran 7,5 m3/jam. 

Sebenarnya variabel utama yang mau diketahui adalah variabel flow (laju aliran). Namun sistem substitusi itu digantikan dengan sensor ketinggian dengan prinsip persamaan matematis maupun korelasi linearitas.

kanal terbuka tampak depan


Intinya open channel itu biasanya menggunakan sistem bendungan untuk memastikan air tetap mengalir. 

Apa yang sebenarnya menjadi masalah?
Kebanyakan orang berpikir bahwa ini sensor flow. Padahal kita tetap harus berpikir bahwa ini level sensor. Kesalahan berpikir ini menyebabkan orang membeli sensor level ini untuk mengukur laju aliran fluida dengan desain open channel yang asal-asalan. Intinya banyak orang yang menganggap bahwa semua parit/kanal itu dapat disebut open channel, padahal banyak sekali syarat untuk menetapkan suatu kanal open channel atau tidak.

Dibawah ini adalah kasus kesalahan berpikir manusia :

the fault of open channel understanding


Dari gambar desain di atas, dapat kita lihat bahwa kanal tersebut merupakan kanal terbuka tapi tidak memenuhi syarat open channel. Kenapa? karena syarat utama open channel merupakan kanal dimana fluida mengalir secara satu arah dan tidak ada feedback flow.

Lantas apa yang terjadi jikalau kita menggunakan level sensor untuk mengukur flow open channel seperti kasus di atas? Jawabannya ya sensor akan tetap mengukur laju aliran fluida berdasarkan level. Padahal kenyataannya tidak ada air yang mengalir, karena air hanya menggenang. Inilah kesalahan yang terjadi ketika kita menggunakan suatu sensor yang tidak pada hakikatnya. Banyak pertimbangan yang benar-benar harus dipahami. 

Hal pertama yang benar-benar harus dipahami untuk kasus ini, apakah kanal yang kita punya sudah memenuhi syarat open channel atau belum.

Apa yang terjadi jikalau kita membawa kasus di atas ke ranah sensor flow yang sebenarnya seperti kasus di bawah?

close pipe and no flowing fluid


Maka jawabannya laju aliran akan terbaca 0 m3/ jam. Karena meskipun ada air, tapi air tersebut tidak mengalir. Inilah keuntungan ketika kita menggunakan alat/barang yang sesuai pada hakikatnya. Pertama kita tidak perlu ragu lagi akan faktor-faktor eksternal (minim pertimbangan lah). Kedua hasil pembacaan sensor tentunya lebih akurat dibanding hasil pembacaan yang sudah melewati proses konversi seperti pada kasus konversi dari level ke flow.


2. Sensor Tekanan untuk aplikasi level.

Banyak orang sudah tahu aplikasi dp sensor (differential pressure) untuk mengukur level. Ya prinsip sederhananya tentunya menggunakan tekanan hidrostatis.

formula of hydrostatic pressure

Sebenarnya ada satu hal yang menjadi concern ketika kita menggunakan prinsip pengukuran level menggunakan tekanan. Pada awal sebelum beroperasi, kita harus menginput nilai density/massa jenis fluida di dalam tangki. Jikalau ada perbedaan temperature antara T fluida input dengan T fluida di dalam tangki, ini lah yang menyebabkan eror dalam kalkulasi ketinggian fluida. Jikalau ada perubahan suhu di dalam tangki, maka dapat dipastikan hasil pembacaan level fluida salah. Untuk lebih paham persamaan matematis antara perubahan massa jenis dengan suhu, dapat dilihat dari link dibawah dan foto di bawah :

https://www.engineeringtoolbox.com/fluid-density-temperature-pressure-d_309.html 

graph of liquid's density based on presure and temperature 

Nah apa yang menjadi problem?
Bayangkan kalau misalnya komoditi fluida yang diukur adalah minyak bumi/crude oil. Misalnya pengukuran level hanya menggunakan single sensor (sensor tekanan) , maka dapat dipastikan eror untuk konversi ke level akan sangat berpengaruh.

Lalu solusinya bagaimana?
Menurut saya pengolahan nilai ketinggian dapat dilakukan di PLC (kontroler), jangan diolah di transmitter. Untuk sensornya perlu ditambahkan sensor density yang juga dihubungkan ke PLC. Nah PLC ini yang nantinya akan mengkonversi input dari sensor tekanan dan sensor density untuk mendapatkan nilai ketinggian yang sebenarnya.

Mengapa sensor substitusi seperti ini begitu banyak digunakan?
Alasannya tentunya adalah soal harga. Bayangkan misalnya untuk sensor laju aliran harganya dikisaran 50-100 juta (electromagnetic flowmeter). Sedangkan sensor level (ultrasonik) untuk konversi ke laju aliran harganya dikisaran 20-30 juta. Selain itu misalnya untuk pengukuran level menggunakan sensor level (radar) harganya dikisaran 50 juta, sedangkan ketika menggunakan sensor dp (tekanan) hanya dikisaran 10 juta. Intinya kalau menurut saya jika harga komoditi fluida yang mau diukur mahal, lebih baik menggunakan sensor yang sesuai hakikatnya. Sebaliknya jikalau komoditi/fluida hanya berupa air misalnya pada plant water treatment plant, hal tersebut menurut saya tidak begitu riskan efeknya.

Kesimpulannya jikalau kita menggunakan sensor fungsi substitusi seperti ini, banyak hal yang harus dipertimbangkan secara matang.


Sunday, March 14, 2021

Membuat PLC dan HMI program untuk flowmeter | INSTRUMENT PART 7

PLC and HMI Programming Using TIA PORTAL V16 SIEMENS

Dah lama nih gak nulis tentang instrumen lagi. Di bagian ini saya akan mencoba membuat program PLC dan HMI untuk pengukuran laju aliran menggunakan flow transmitter tentunya. Oiya saya mau cerita sedikit tentang instrumen khususnya PLC  wkwk. Dulu pas kuliah seperti yang pernah saya sampaikan, peminatan saya sebenarnya abu-abu wkwk. Abu-abu dalam artian saya selalu cari aman kalau ngambil mata kuliah. Berhubung PLC merupakan mata kuliah peminatan dan saya dari dulu merupakan orang yang benci segala sesuatu yang berbau "programming", akhirnya saat itu saya putuskan untuk tidak ambil matkul PLC wkwk. Nah baru setelah lulus, saya mengikuti pelatihan PLC di CITA (Center for Instrumentation and Automation) Institut Teknologi Bandung. Awalnya saya mengikuti dengan sedikit sulit (karna saya lemah di logika wkwk), namun tetap bisa mengikuti pelah-pelan lah wkwk.


ITB 2019


Berhubung Siemens tidak memiliki produk data logger, sementara banyak sekali permintaan transmitter yang juga mengikutsertakan data logger untuk penyimpanan data, mentor saya mencoba alternatif menggunakan PLC. Kenapa tidak pakai SCADA (Supervisory Control and Data Acquisition) ? Ya jawabannya karena konsumen tidak punya SCADA, tapi ingin punya data logger untuk transmitter khusus yang datanya dianggap perlu. Solusinya tentunya menggunakan Mikrokontroler yang mempunyai memori, walaupun memori PLC ya terbatas dan ada variannya. Oiya saya sampaikan kembali bahwa transmitter itu hanya bisa mengukur dan mengirim data, tapi tidak bisa menyimpan data real time.

Selama saya mengerjakan tugas kecil-kecilan ini, saya sangat antusias. Jujur tugas ini lebih sulit dari skripsi saya yang tak seberapa itu wkwk. Saya juga berterima kasih kepada mentor saya (Bang Hutagaol) yang begitu banyak mengajarkan saya ilmu instrumentasi. Oiya untuk software nya sendiri menggunakan TIA Portal V16 punyanya SIEMENS tentunya. Dulunya software PLC itu namanya SIMATIC S7, dan software SCADA nya namanya WinCC. Sekarang SIEMENS menggabungkan keduanya dalam satu software namanya TIA PORTAL. 

1). Pahami Alur Proses

Sebelum kita merancang dan membuat program, kita harus paham dulu alur proses di dalam transmitter (dalam hal ini flow transmitter). Karena di dalam flow transmitter ada 2 fitur, yaitu pengukuran flow (m3/jam) dan fitur akumulasi totalizer (m3), maka kita perlu membuat kedua alur tersebut.

Alur untuk fitur flow : Transmitter mengirimkan sinyal analog input ke PLC berupa 4-20 mA, PLC akan mengkonversi sinyal tersebut kedalam bit, kemudian di scaling kan menggunakan span, untuk didapatkan nilai laju aliran. Kalau belum paham alurnya seperti ini :

Banyak instrumen menggunakan 16 bit, yang berarti 2^(16-1) =  0 - 32768. Namun scaling span bit yang banyak digunakan orang di muka bumi ini adalah 0 - 27648. Di beberapa forum dijelaskan bahwa batas nilai efektifnya sebesar 85% dari nilai maksimal 32768.

Misalnya instumen (flow transmitter) memberikan sinyal 12 mA (50% span arus) ke PLC, maka nilai bit yang yang diterima PLC adalah 50% * 27648 = 13824. Nah untuk pembacaan aktual nilai flowrate sebenarnya, maka diperlukan span flow transmitter itu sendiri. Misalnya flow transmitter A memiliki Qmax (max flowrate) = 400 m3/jam, maka ketika transmitter mengeluarkan sinyal 12 mA, maka nilai flowrate saat itu adalah = 400 m3/jam * 50% = 200 m3/jam. Begitulah alur pengukuran flow ( menggunakan analog input berupa arus).

Alur untuk totalizer : Alur totalizer adalah menggunakan prinsip pulse. Pulse disini dimaknakan seperti input clock (digital) ke PLC. Itulah sebabnya untuk pengukuran totalizer menggunakan pulse.

Prinsipnya seperti ini : Pada flow transmitter, tertera nilai volume per pulse, misalnya transmitter A menggunakan 10 liter per pulse. Artinya setiap 10 liter aliran yang telah melewati transmitter, maka transmitter akan mengirimkan logic 1 ke PLC. Misalnya nilai totalizer di transmitter adalah sebesar 34567 liter dengan settingan 10 liter/pulse. Ini berarti PLC telah menerima sebanyak 3456 pulse dari transmitter. Namun saat itu PLC hanya bisa membaca sebesar 34560 liter. Kenapa bukan 34567? Karena kelipatan minimum pulse nya adalah sebesar 10 liter, sehingga 7 liter itu tidak terbaca PLC. Kenapa tidak dibikin 1 liter/pulse? Ya jawabannya karena otak PLC juga terbatas menerima pulse dalam satu satuan waktu.

2. Buat diagram Ladder

Setelah memahami alur proses, kita bisa membuat diagram dengan lebih tenang wkwk. Untuk pengukuran flow karena menggunakan analog input, kita bisa membuat diagram Norm X dan Scale X. Nah yang ribet ini untuk pengukuran totalizer. Saya juga dibantu oleh mentor ketika membuat program ini, karena pengetahuan saya yang terbatas terkait fitur-fitur block PLC wkwk.

Selama saya menegerjakan tugas ini, banyak sekali hal baru yang saya dapat diluar dari pengetahuan pas pelatihan dulu. Misalnya terkait penggunaan diagram block dan function block yang ternyata mempunyai seni nya sendiri dalam PLC Programming.

Diagram Block

Function Block

Main Program


3. Buat program untuk screen HMI

Untuk HMI sebenarnya lebih ke arah kreativitas dan estetika tampilan aja sih. Disini yang saya tampilkan adalah : Nilai pembacaan transmitter, setup, dan grafik real time pengukuran. Setup merupakan salah satu fitur yang penting ya dalam HMI, karena di setup lah user administrator bisa merubah hal penting, seperti satuan.

Main screen

Setup Screen

Graph Screen on HMI


Oiya pada TIA PORTAL ini kita bisa mensimulasikan hasil program kita, untuk mengecek apakah program yang kita buat sudah benar atau belum. Nama softwarenya adalah PLC SIMULATOR yang juga include dengan TIA PORTAL V16. Jadi kita bisa langsung mensimulasikan program PLC dan HMI tanpa perlu dihubungkan ke fisik PLC. Sejauh ini saya masih hanya membuat program untuk pengukuran, untuk data loggernya mungkin saya share di lain waktu wkwk.

Saya sudah mencoba mensimulasikannya, dan hasilnya bisa dilihat di link :



Saturday, January 30, 2021

Flow Transmitter | INSTRUMENT PART 5

Flow Transmitter

Flow transmitter merupakan transmitter yang bertujuan untuk mengukur laju aliran fluida (sesuai namanya). Ada 2 fitur yang biasanya ditampilkan pada flow transmitter, yaitu flowrate (debit)  dan totalizer. Simpelnya, flowrate menampilkan berapa debit aliran fluida, sementara totalizer menampilan berapa volume fluida yang telah melewati transmitter.

teori laju aliran

Satuan flowrate : m^3/h ; satuan totalizer : m^3

*satuan bisa diubah ke liter/detik ataupun satuan lainnya, cukup gunakan tabel konversi

Jenis Flow Transmitter dan spesifikasinya

Tabel di atas menjabarkan jenis-jenis flow transmitter dan spesifikasinya. Secara umum flow meter terbagi atas 5 jenis, yaitu : Electromagnetic, Coriolis, Vortex, Ultrasonic dan Differential Pressure.

Jenis-jenis Flow Transmitter :

1. Electromagnetic Flow Transmitter

Electromagnetic Flow Transmitter


Prinsip kerja

Transmitter ini menggunakan prinsip electromagnet Hukum Faraday. Sensornya berupa electroda yang berada di sisi kanan kiri pipa, sementara exciter nya berupa coil (kumparan di atas dan bawah pipa). Exciter sendiri berfungi untuk membangkitkan medan magnet. Seperti yang kita tahu, jikalau dua buah coil diberi arus, maka diantara kedua coil tersebut akan timbul medan magnet. Nah jikalau ada material konduktif yang bergerak di antara coil tersebut, maka akan timbul electromotive force atau simpelnya beda potensial (tegangan listrik). Nah electromotive force ini lah yang akan dideteksi oleh electroda yang berada di samping pipa. Untuk lebih memahaminya kita harus memahami teori hukum Faraday.






Just for info saja, salah satu syarat ketika ingin menggunakan transmiter ini, fluida yang mengalir harus memiliki konduktivitas > 20 mikroSiemens. Hal ini karena jikalau fluida tersebut tidak bersifat konduktif (seperti solar), maka tegangan tidak dapat dibangkitkan di elektroda.  Seperti gambar di bawah ini, laju aliran deionized water tidak cocok diukur menggunakan electromagnetic flow transmitter karena konduktivitasnya < 20 mikroSiemens.

Electric conductivity on some solutes


Untuk lebih lengkapnya bisa tonton video berikut : https://www.youtube.com/watch?v=f949gpKdCI4


2. Coriolis Flow Transmitter

Bisa dikatakan, Coriolis merupakan transmitter termahal di bidang pengukuran flow. Transmitter ini memiliki eror akurasi 0.1, yang merupakan eror akurasi terkecil dibanding jenis flow transmitter lainnya. Di dalam transmiter ini juga dilengkapi dengan sensor temperature untuk mengukur suhu fluida.



    Coriolis Flow Transmitter


Prinsip Kerja.

Prinsip kerjanya menggunakan efek koriolis (saya juga gak begitu paham teorinya wkwk) invented by Gustave de Coriolis. Tapi saya gak tahu siapa yang mengaplikasikannya ke pengukuran flow. Kalau di transmitternya itu ada 2 pick up sensor. Intinya ya kayak sensor proximity gitu, jadi dia sense (menerima sinyal) setiap pipa tersebut melengkung ke dekat sensor. Nah di dalam transmitter  itu, pipa akan melengkung ketika ada fluida yang mengalir. Jikalau ada fluida yang mengalir, maka sensor pickup di bagian inlet pipa akan menerima sinyal, kemudian gantian sensor pickup di outlet. Sebenarnya prinsipnya kayak resonansi getaran gitu kalau menurut saya, jadi nanti ada delta time (selisih waktu antara pickup inlet dengan pickup outlet). Selisih waktu ini lah yang secara teoritis disebut phase shifting (pergeseran fase gelombang). Intinya :

  • Delta time sebanding dengan mass flow rate.
  • Fluid density sebanding dengan frekuensi maupun suhu fluida terukur.
  • Nah dari 2 nilai variabel di atas, kita bisa mendapatkan nilai Volume flow rate.

Untuk lebih paham lagi, kalian bisa klik link video di bawah :

https://www.youtube.com/watch?v=31jYXlnu-hU dan https://www.youtube.com/watch?v=XIIViaNITIw



phase shift = mass flow of fluid


Yang pasti Transmitter Coriolis ini udah paket lengkap transmitter jenis flow lah. Bisa tahu suhu, density, mass flow rate, volume flow rate, dan totalizer juga.


3. Vortex Flow Transmitter

Nah yang satu ini di bawah Coriolis sedikit terkait dengan kualitas. Tapi sama-sama high class untuk flow transmitter lah bisa dibilang.

Vortex Flow Transmitter

Prinsip Kerja

Prinsip kerja Vortex Transmitter adalah menggunakan teori Von Karman efek. Intinya bahwa setiap aliran akan menciptakan pusaran secara bergantian setiap menabrak suatu objek penghalang berwujud solid. Setelah bluff body (penghalang), ditempatkan suatu sensor piezo electric (pick up sensor) yang berfungsi untuk sensing pusaran tadi. Nah kecepatan aliran fluida akan sebanding dengan frekuensi, dan debit dapat dihitung menggunakan nilai luas pipa dan kecepatan aliran. Lengkapnya ya seperti di bawah ini :

Vortex work principle 


bisa juga liat di video berikut https://www.youtube.com/watch?v=GmTmDM7jHzA  atau https://www.youtube.com/watch?v=QxCeVVXF2ng


4. Ultrasonic Flow Transmitter

Nah untuk flow transmitter, jenis ini merupakan salah satu yang banyak digunakan. Tentunya karena harganya tidak semahal 2 transmiter di atas wkwk. Transmitter ini terbagi menjadi 2 tipe, yaitu tipe inline ultrasonic dan clamp on ultrasonic. Inline berarti pipa harus dilubangi, dan sensor dimasukkan melalui lubang tadi (sensor kontak langsung dengan fluida). Sementara untuk tipe clamp on, sensor cukup hanya terpasang di luar pipa.

Prinsip kerja secara umum

Sesuai dengan ultrasonik transmitter tipe level, prinsip umumnya ya dengan memancarkan gelombang UT. Fenomenanya ya berdasarkan waktu untuk emit-receive gelombang UT.


https://www.youtube.com/watch?v=Bx2RnrfLkQg atau https://www.youtube.com/watch?v=DD2bBLu6kLM

Inline Ultrasonic Flow Transmitter

Seperti yang saya katakan di atas, sensornya kontak langsung dengan fluida. Tipe ini nantinya di spesifikkan ke jumlah sensor UT nya. Ada yang single path, ada yang double path. Makin banyak jumlah pasang sensor (path), maka pengkuran flow rate dipastikan semakin akurat. Keuntungan tipe ini adalah instalasi  sensor gampang, karena sensor dan pipa sudah terpasang langsung dari factory Siemens (pipa + transmitter). Kekurangan tipe ini adalah biasanya tidak pernah dipesan jikalau suatu plant sudah beroperasi, karena harus memotong pipa di plant. Jadi pemesanan jenis ini biasanya saat pabrik dalam tahap perencanaan atau saat prior to commissioning lah bisa dibilang.

double path inline UT flow transmitter


Clamp-On Ultrasonic Flow Transmitter


Prinsip kerja reflected ultrasonic

Nah jikalau suatu pabrik yang sudah beroperasi ingin expand atau menambahkan instrument device, jenis inilah yang banyak dipesan. Jenis clamp on juga dapat dibagi 2 jenis lagi, yaitu jenis reflected dan non refleceted.

non reflected Clamp On UT Transmitter

Reflected Clamp On UT Transmitter

Kelebihan jenis ini tentunya tidak diperlukan pemotongan pipa saat instalasi. Kekurangannya? Sangat menyiksa engineer sih sebenarnya. Dimulai dengan pertanyaan "gimana cara kita tahu jarak kedua sensor tersebut?". wkwkwk nentuinnya itu harus pake software. Banyak nilai variabel yang harus diketahui seperti : material pipa apa, tebal pipa berapa,  liner (bagian dalam pipa bahannya apa), tebal liner berapa, fluida yang dialirkan apa? wkwkwk yang bikin sulit sebenarnya lebih ke arah nyari nilai variabel tadi karena biasanya data-data tersebut tidak disimpan secara detail oleh pengelola pabrik. Emang kalau misalnya data tadi gak lengkap akibatnya apa? mungkin tersirat pertanyaan seperti itu. 

Fenomena ini yang akan menjelaskan :

Pembiasan gelombang cahaya


Hukum Snelius terkait indeks bias gelombang

Ya jawabannya karena gelombang UT juga dibiaskan. Tebal pipa dan liner, material pipa dan liner, jenis fluida (viskositas), inilah yang akan mempengaruhi pembiasan/pembelokan gelombang UT. Semua data inilah yang diperlukan software untuk mengkalkulasi jarak antara kedua sensor UT. Kalau misalnya jaraknya tidak sesuai? maka Transmitter tidak akan dapat membaca hasil sensor karena gelombang yang dipancarkan jatuhnya  di samping sensor yang berfungsi untuk menerima. Intinya gelombang tidak tersensing tepat di sensor satunya. 

Kalkulasi Spacing (jarak antar sensor) menggunakan software Siemens

Seperti hasil di atas (hanya contoh), diperoleh jarak spacing sebesar 275 mm atau 27,5 cm. Didapat juga rekomendasi instalasi menggunakan jenis reflected UT. 

Oiya terkait dengan liner, saya akan menjelaskan sedikit. Liner itu simpelnya adalah bagian dalam pipa. Biasanya liner ini digunakan pada apliasi material reaktif (saya juga kurang paham contohnya) simpelnya bersifat korosif lah. Jadi pipa luar tetap kuat dan tidak terkikis.


Liner pipa yang berwarna merah


5. Differential Pressure Flow Transmitter (Orifice Plate)

DP transmitter ini atau biasa disebut orifice plate merupakan jenis flow transmitter yang biasa digunakan di lapangan. Selain harganya yang murah, pemasangannya juga tidak begitu sulit. Bentuknya seperti cincin yang nantinya menghalangi aliran fluida.

Orifice Plate and DP Transmitter

 

Prinsip Kerja

Prinsip kernya menggunakan prinsip penurunan tekanan (pressure drop sebelum-sesudah orifice). Tekanan sesudah orifice tentunya akan lebih rendah ketimbang tekanan sebelum orifice. Delta Pressure inilah yang dikonversi menjadi laju aliran (flow rate) dengan menggunakan persamaan Hukum Bernouli. Dua sensor yang berada sebelum dan sesudah orifice akan terhubungan ke pressure chamber dan diaphragma di dalam transmitter untuk membandingkan nilai selisih tekanan.

Differential Pressure Working Principle


Untuk lebih jelasnya bisa kalian lihat di https://www.youtube.com/watch?v=oUd4WxjoHKY


Flow transmitter merupakan transmitter yang paling banyak jenisnya wkwk. Dapat kita lihat bagimana kejeniusan ilmuwan zaman dulu  menemukan fenomena-fenomena fisis yang tepat untuk mengukur laju aliran. Untuk jenis flow kali ini, tentunya juaranya jatuh kepada fenomena efek Coriolis, dengan akurasi pengukuran flow nya yang sangat tinggi.